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ABSTRACT 

We address the issue of the fallacies associated with the gauge concept in electromagnetism.  Brief, 

elementary arguments suffice to demonstrate the fallacies.  The simplicity of the proofs indicates that the 
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I.  INTRODUCTION 

Our primary objective is to illustrate the fallacies associated with the gauge concept in electromagnetism 

and suggest a more valid formulation.  The primary fallacy is that the vector potential lacks physical 

meaning because of the freedom of choice of gauge. This number and nature of the fallacies indicates that 

the physics community is not immune from groupthink.   

The orthodoxy of the gauge concept has been repeated verbatim from one electromagnetism textbook to 

another for generations.  The Lorenz gauge is at the heart of this orthodoxy.  As a reflection of the 

uncritical acceptance of this concept, all textbooks (until very recently) have attributed the concept to 

H.A. Lorentz rather than its rightful author, L. Lorenz [1].   The first two editions of Jackson’s 

“Electrodynamics”, for example, attribute this gauge to H.A. Lorentz.  This error is corrected in the third 

edition[2].  It seems that the gauge concept itself has received a similar lack of attention.   

II. DEMONSTRATIONS OF THE GAUGE FALLACIES 

At present, the gauge concept is the centerpiece of electromagnetism.  Electromagnetism is often 

considered a paradigm for gauge theories with the freedom to choose arbitrary values for a gauge 

presented as a convenient shortcut in problem solution.  The evidence suggests that, on the contrary, the 

electromagnetic gauge concept is a source of numerous fallacies that also mask some important physics 

principles.   

We begin with some elementary notes:  According to the Helmholtz theorem, which we invoke 

throughout, any physically meaningful vector can be written as a sum of a gradient of a scalar and a curl 

of a vector.  A gauge choice is required if one needs to obtain quantitative expressions for variables that 

are described only by a curl equation.  One generally chooses a gauge that produces the least cumbersome 

form for relationships among variables, in analogy with the choice of zero for the Coulomb potential. The 

choice of zero for the gauge usually serves this purpose.  Also, alternative choices of gauge cannot affect 

the underlying physics.  These points are illustrated in the following. 

A. Hidden Gauge 

The magnetic field    is given by, 

 B A . (1)  (1) 

According to the Helmholtz theorem, the general expression for the vector potential, A , is thus given by 

 A AA F   . (2) 

Equation (1) defines A  to within an arbitrary gradient function, A , so a gauge choice is required.  A 

non-zero divergence of a vector implies the existence of a scalar field associated with that vector.  As we 

will see, one source of confusion in the literature is that vector potential is treated as the sole variable 
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requiring gauge choice.  This confusion arises, in part, from the practice of lumping different variables 

under the same label.  We now briefly review this standard practice, and provide an alternative approach 

where the variables are labeled to help eliminate this confusion.   

Faraday’s law is originally expressed as a line integral of the induced field,    , around a closed path, 

which leads to the relationship, /IE B t    . Since the Coulomb field is derivable from a scalar 

potential, C CE   , when these two electric fields are present together  the fields can be summed into 

a  total, I CE E E  , giving  /E B t    . Applying Eq.(1) gives ( / ) 0E A t    .  Thus, 

/E A t    , with   representing the gradient of a general scalar, so that E  originates from a 

scalar and a vector potential,  

 /E A t    . (3) 

This leaves the impression that there is only one variable requiring a gauge choice in order to give a 

quantitative definition for E . If one preserves the distinction among variables, it is clear that there are two 

gauges to consider.  Adhering to the original form of the Faraday law, which relates specifically to the 

induced field, IE , one obtains 

 I / /E B t A t       ,  (4) 

so that, 

 ( / ) 0IE A t    . (5) 

Again, the curl defines the quantity in parenthesis to within an arbitrary gradient of a scalar function, I , 

associated with the definition of   .  So the general expression for     is  

                         
/I IE A t     , (6) 

and the total field,  

( ) /C I C IE E E A t        ,                    (7) 

with A  given in general form by Eq.(2).  Comparing Eqs.(3) and (7) shows that   is not the Coulomb 

potential as conventionally assumed, but is generally the sum of two scalar fields,   C I    .  So, 

substituting the Coulomb potential, C , in place of    implies the hidden gauge choice 0I  .  

Similarly, it can be seen from Eq.(6) that the standard practice of employing 

 /IE A t    (8) 
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implies the same hidden gauge choice, 
I =0.  A general observation, which can be verified by reviewing 

the literature, is that the hidden gauge choice is made universally in electromagnetism in one of the two 

ways described above, so 
I =0 is the implicit “standard gauge” in electromagnetism.   

We can illustrate how the hidden gauge leads to the conventional formalism using Gauss’ law for 

dynamic fields, which is given by 

                  .  (9) 

Inserting Eq.(6) into Eq.(9) gives the general expression of Gauss’ law in terms of the two gauge choices,   

                            . (10) 

It follows from Eq.(10) that the free choice of one gauge precludes the free choice of the second. We will 

discuss this further in a later section. 

Applying the hidden gauge choice, I =0, gives us the conventional expression of the dynamic Gauss’ 

law,  

                   . (11) 

Another illustration of the implicit use of the hidden gauge is the vector potential wave equation.  The 

general expression for wave equation for the vector potential in terms of the two arbitrary gauge choices 

is obtained using Ampere’s law, 

 ( / )TOT TB A J J E t         , (12) 

where TJ is the true current.  Applying Eq.(6) to Eq.(12) gives the general wave equation in terms of the 

two gauges, 

                                           .  (13) 

Again, we see that applying the standard gauge, 0I  , gives the familiar standard form for the wave 

equation for A , 

                                         . (14) 

 

B. Hidden Law of Physics 

The usual derivation of the dynamic form of Gauss’ law (Eq.(9)) involves nothing more than plugging the 

sum of the dynamic fields into the static expression for the Coulomb field. That is not justified, and there 

is much more to it.  Equation (9) contains a hidden law. Because of retardation effects, the Coulomb field 

no longer propagates instantaneously, so it no longer obeys Gauss’ law.  Equation (9) really says that the 

dynamic Coulomb field induces a self-correcting, non-solenoidal component to the      field so that the 

total electric field obeys Gauss’ law.  Consequently, the total E , in effect, appears to propagate 
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instantaneously from a central source or a distribution of central sources.  The basic example of this 

phenomenon is the pair of Lienard-Weichert potentials for a moving point charge;  for a moving charge, 

neither      nor     is radial, but the sum is radial, so that the E  field obeys Gauss’ law and appears to 

propagate instantaneously. This effect is arguably the most fascinating phenomenon in electromagnetism 

and is the key to preserving the continuity equation.  Unfortunately, it is buried beneath layers of gauge 

fallacies.  

We stated above that there is more to the derivation of the dynamic form of Gauss’ law than simply 

substituting the total dynamic electric field into the static form of Gauss’ law.  It really derives from the 

need to preserve the continuity equation. This can be shown in the standard gauge, for example, by 

combining the time derivative of Gauss’ law Eq.(11) with the divergence of Ampere’s law given in 

Eq.(12).  The result is 

             . (15) 

So the real basis for the dynamic form of Gauss’ law is the requirement of charge conservation. 

The hidden law in the dynamic form of Gauss’ law is expressed as: A dynamic Coulomb field induces a 

self-correcting scalar component for the induced field so that the total electric field obeys Gauss’ law.  

Implicit in this law is that there are no induced scalar fields in the absence of dynamic Coulomb fields      

( 0I  ). Faraday’s law defines       via a closed line integral so any scalar component is left undefined.  

This hidden law actually supplements Faraday’s law to allow a complete definition of     (completely 

defined by curl and divergence).  This hidden law is unrelated to any gauge choice.  It can be given 

precise mathematical expression by invoking the scalar wave equation for the Coulomb field as a law of 

physics, 

              
          , (16) 

and comparing this with the general expression for Gauss’ law, Eq.(9).  By inspection it is seen that  

               
      (17) 

is a general requirement.  Equation (17) applies under all circumstances.  It is independent of any gauge 

choice. In the absence of dynamic fields,       , which is consistent with the hidden law that requires 

there be no induced scalar fields in the absence of dynamic Coulomb fields.  All of this indicates that 

Eq.(17) be considered a missing Maxwell equation.  

We next consider this hidden law in the standard gauge ( 0I  ).  It follows directly from Eqs.(8) and 

(17) that  

                     
 .  (18) 

Equation (18) has exactly the same form as the Lorenz condition, but here it is more than a condition. It 

derives from a law of physics.  It reflects a causal relationship describing precisely how the dynamic C  

induces A .  Combining Eq.(18) with Eq.(1) defines the vector potential A completely in all 

circumstances in the standard gauge. Note that if one initially uses Eq.(18) as the gauge choice, then it 
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follows from Eq.(10) and (16) that 0I  , so that choice is equivalent to the standard gauge. These serve 

as an example of a consistent set of gauge choices. 

For completeness, we note that the counterpart to Eq.(18) in the Coulomb gauge (     ) is obtained in 

the same manner, giving 

 
2 2 2 2( / ) /I C t c      . (19) 

Equation (18) describes how the dynamic Coulomb field induces the scalar I  .  At this point, we see that 

by explicitly adopting the hidden, standard gauge and adding Eq.(8) and (18)  to Maxwell’s equations, 

one has a complete set of familiar fundamental equations. There is no need for further discussion of the 

electromagnetic gauge concept.  One can initially fix the gauge (
I =0) in a footnote, and forget it.   

We continue the discussion of the details of the gauge concept, however, in order to address the other 

major fallacies.  Thus far we have considered the first two of the major fallacies: there are two 

electromagnetic gauges, not one, and Eq.(18) is not merely a condition but is derived from a hidden 

universal law of physics, and represents a fundamental physical requirement for the vector potential, A , 

defined by 0I  .   

C. In the Absence of Dynamic Coulomb Fields 

We now turn to the cases where dynamic Coulomb fields are absent ( i.e., where there are no retarded 

Coulomb fields).  This will also serve as background for discussing Konopinski’s paper [3,4] on the 

meaning of the vector potential.   Assume the standard gauge ( I =0).  In regions where Coulomb fields 

are absent, the law of physics expressed by Eq.(18) gives      . This coincides with the choice of 

Coulomb gauge (or radiation gauge) which is conventionally invoked in such cases.  On the other hand, if 

one begins with the Coulomb gauge,      , then Gauss’ law (Eq.(10)) requires I =0.   Thus, both 

gauge choices are compatible and both give        , and /IE A t   .   

Examining the real reason for this compatibility shows another major fallacy.  There is a conflict between 

the gauge concept and physical reality here which can be seen from the hidden law of physics discussed 

above:  in the absence of dynamic Coulomb fields, there can be no induced scalar component for IE so 

0I  . Thus,                   is a fundamental physical requirement.  Consequently, the 

gauge concept itself is not applicable in the absence of dynamic Coulomb fields for the simple reason that 

one does not have free choice of    .  Note that since             holds for all times, (e.g., during 

the energizing of a solenoid) the only physically meaningful option is      .  Thus, the “Coulomb 

gauge” is always invoked erroneously since it is always applied in the absence of dynamic Coulomb 

fields where there is no free choice. (We give a more general proof that      is a physical 

requirement in the absence of Coulomb fields in section F, below) 

We now consider the physical meaning of the vector potential as developed by Konopinski in his 

challenge to the orthodox view that A  has no physical meaning.  Using the infinite solenoid, (as used in 

the Bohm-Aharonov effect to show the reality of A  in quantum mechanics) he demonstrates that the 
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vector potential was always unique and had physical meaning as the field momentum of a unit charge in a 

magnetic field for the solenoid.  (Note that the field momentum is dependent upon gauge choice in the 

general case.)  Konopinski also gives an operational definition for A , in analogy with the operational 

definition of the potential of a static Coulomb field. This gives A  measurability.   Thus, the earlier 

experimental demonstration of the Bohm-Ahronov effect was unnecessary.   

A comment on Konopinski’s [3,4] basic assumptions:  He specifically makes the usual assumption that 

the potential in Eq.(3) is a Coulomb potential. This implies the hidden gauge assumption, I =0. He also 

explicitly assumes that the Coulomb gauge applies.   This assumption overlooks the larger issue that in 

the absence of any Coulomb fields, the gauge concept itself is not applicable.  So the real reason that 

Konopinski can give unique physical meaning to this vector potential is the same reason that the Bohm-

Aharonov effect gives a unique physical meaning to A : A is uniquely defined because the gauge concept 

does not apply in the absence of dynamic Coulomb fields. 

 

D. In the Presence of Dynamic Coulomb Fields 

A gauge choice is only required in the presence of retardation effects associated with dynamic Coulomb 

fields.  As we have discussed, for such cases there are two available gauges to consider.  Return to the 

standard gauge wave equation ( I =0),  

                                         . (14) 

Applying Eq.(18) has the effect of combining the Coulomb source term and the scalar component of A  

giving the familiar form for the wave equation in the standard gauge, 

 
2 2 2/ TA A t J       . (20) 

Note that the induced scalar potential A  that exists in this gauge must also obey the wave equation.  

Substituting Eq.(2) into Eq.(19) shows, 

 
2 2 2 2( / ) /A A t c     =0. (21) 

Gauss’ law now takes on the form ( I =0), 

 
2 2( / ) /C A t          . (22) 

Eq. (22) says that these two dynamic scalar fields add in such a manner as to produce a net quasi-static 

scalar field.   

It is instructive to consider the corresponding Coulomb gauge (     ) expression for Eq.(22).  This 

expression is obtained directly from Eq.(10),  

 
2 2( ) /C I          (23) 
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Note the similarity of  Gauss’ law in the two gauges, Eqs.(21) and  (22). Both express the same physics 

contained in the hidden law but in different forms.  Both say that the sum of the two dynamic scalar fields 

is a quasi-static field.  In other words,  is an instantaneously propagating field.  In the standard gauge, 

the real induced scalar field is assigned completely to the vector potential, via A  , while in the Coulomb 

gauge, the real induced scalar field is assigned directly to IE
 
via I . 

We can now complete the set of equations with the Coulomb gauge expression for vector potential wave 

equation.  Substituting       into the general form, Eq.(13), gives,
 

 
2 2 2/ ( ) /T C IA A t J t            . (24) 

As with the other relationships, the two vector wave equations, Eqs.(20) and (24),  in their respective 

gauges describe the same physics, but in different forms.  The difference is accounted for by the fact that 

the vector potential in Eq.(24) is solenoidal,  while that in Eq.(20) is not.  Equation (24) shows nicely that 

the vector potential is solenoidal if one adds the net displacement current to the true current in order to 

form a source that is a closed current loop. Note that the displacement current arises from the time 

derivative of   in Eq.(24) , which obeys Gauss’ law at all times. Thus, it is an instantaneously 

propagating longitudinal field, producing an instantaneously propagating displacement current.   

From the above discussion it is clear that current continuity is at the root of the hidden law. The 

propagation of displacement currents from scalar fields are longitudinal, extending the longitudinal path 

of the true current, TJ , to form a closed loop.  

The reader can confirm that both wave equations, Eqs. (20) and (24), express the same physics:  the 

divergence of both returns the continuity equation, and the curl of both returns the wave equation for the 

magnetic field, B . (The reason that different vector potentials give the same B is that scalar components 

contribute nothing to B .) 

E.  The Peculiarity of the Coulomb Gauge  

Jackson’s textbook (3
rd

 edition) [2,5] offers a demonstration that the Coulomb gauge exhibits the 

“peculiar” requirement that dynamic Coulomb fields propagate instantaneously. The problem is that this 

demonstration clashes with relativity and, specifically, with the fundamental law of physics embodied by 

the wave equation for Coulomb fields, Eq.(16).   

We reproduce Jackson’s demonstration here. Apply the Coulomb gauge,      , to the standard gauge 

expression, Eq.(11), to give, 

 
2 /C     . (25) 

This equation indeed requires that Coulomb fields propagate instantaneously; it is an absurdity, however, 

arising out of the simultaneous selection of the hidden gauge I =0 and the conflicting Coulomb 

gauge      . One cannot select conflicting gauge choices without violating the laws of physics.  
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F. A Picture of Reality 

Let us now reconsider the wave equations in the two gauge choices from a clearer perspective. The vector 

potential that appears in Coulomb gauge (Eq.(24)) form of the wave equation is actually the total vector 

potential, TOTA . It originates from the closed current loop, TOTJ , comprised of true currents propagating 

instantaneously within conductors and displacement currents arising from the instantaneously propagating 

longitudinal fields  .   

 The standard gauge wave equation, Eq.(20), describes a different vector potential. It originates from the 

true current source TJ , rather than the total TOTJ . Hence, the vector potential A in that equation is a 

component of TOTA .  Consequently A  is not solenoidal, and it contains a scalar source term.  The point is 

that if TOTA  is the total vector potential that arises from a closed current loop, it must be solenoidal 

(        ). This can be proven using Eq.(12), rewritten as, 

                        
. (26) 

It follows from taking the divergence of both sides of Eq.(26) that the continuity equation for a closed 

loop         , requires         . In the absence of Coulomb fields, A  must arise from a closed 

loop of either TJ or displacement current /DJ E t   . Thus, TOTA A and              is a 

requirement of the continuity equation.  There is no choice in the matter, so, as we illustrated in a 

different way earlier, the conventionally invoked “Coulomb gauge” and “radiation gauge” are always 

invoked erroneously.   

The same is true for our Coulomb gauge labeling of Eq.(24).  The choice of        produces basic 

equations for the real, physically meaningful vector potential, TOTA .  If our objective is to obtain basic 

equations for the real, physically meaningful vector potential, TOTA , there is no choice. 

By the same token, the familiar vector potential, A , associated with the standard gauge choice, 0I  , 

has precise physical meaning as the component of TOTA arising from TJ  .  The familiar vector potential,

A , is completely defined because its divergence is given by Eq.(18).  Referring to Eq.(2), A  has a scalar 

component.  It follows from these examples that the freedom of choice of gauge does not imply undefined 

vector potentials, it implies freedom to choose different vector potentials, which is an entirely different 

matter 

All of these points are summarized in the schematic of Figure 1 which compares the two general 

categories of problems one encounters in electromagnetism.  The case where dynamic Coulomb fields are 

absent is shown on the left, and the case where Coulomb fields are present is given on the right.  The 

schematic on the left corresponds to the case where the real current, TJ , forms a closed loop so that the 

gauge concept does not apply ( TOTA A ).  For completeness include the equivalent case where the 

closed loop is comprised entirely of a displacement current corresponding to the physics of 

electromagnetic radiation (“radiation gauge”).  
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The schematic on the right reflects the special case where both types of current exist together to form a 

closed loop ( TOTA A ).   The overall circuit geometry is identical in both cases so TOTA is the same in 

both. Perhaps this picture is worth more than all the words we offer here.  It should be clear from this 

diagram that          in both cases, so the vector potential TOTA is unique and completely defined in 

both.  The side by side comparison also makes the point that inserting a capacitor into a circuit cannot 

transform the vector potential from a real, measurable quantity on the left to a mere mathematical 

convenience on the right. 

G. The Lorenz Transformation 

We stated in the introduction that the Lorenz transformation is the centerpiece of electromagnetism. We 

examine this in light of the above analyses. In terms of the Lorenz transformation function, , this 

transformation is given as, 

 
' '; /A A t        . (27) 

The freedom to define different vector potentials in terms of this transformation is justified on the basis 

that it leaves the total E unchanged.  This same transformation can be reconsidered in terms of the two 

gauge choices so that 

 
' '; /

IA I AA A t        . (28) 

We can see that  has real physical meaning originating from the real scalar potential induced by the 

dynamic C . Equation (28) describes exactly how the potentials, I and A can be freely distributed while 

preserving the net induced scalar field and the net electric field, E .   

It is clear from the discussion presented to this point that the Lorenz transformation offers a misleading 

set of choices of vector potentials.  Our focus has been on the two simplest gauge choices, 0A  , and 

0I  . These provide mathematical expressions that relate to physically meaningful variables, A , TOTA , 

and IE which suffice for problem solving.   

This existence of this range of choices in the special case where dynamic Coulomb fields are present 

cannot justify the general conclusion that vector potentials lack meaning.   The vector potential TOTA , for 

example, is real and exists in nature regardless of the fact that one can choose a gauge that doesn’t relate 

to that vector potential.  Different gauge choices define different vector potentials; they do not imply 

different definitions of the same vector potential, as often claimed.   Freedom of choice does not imply 

that the vector potential is meaningless. To reinforce this point, the real reason that Equations (8) and (18) 

have proven so useful is that they apply to a real, physically meaningful, vector potential, the standard A . 

The belief that electromagnetism is the paradigm for contemporary gauge theories is based entirely on 

freedom of choice offered by the Lorenz transformation. It is fair to question this characterization given 

that the need for a choice of gauge only exists in the special case where dynamic fields are present.  Even 

in that special case, if one wants a set of basic equations that apply to a specific physically meaningful 
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vector potential, there is no choice. It is also fair to ask if this is the paradigm, how many other 

fundamental laws of physics are being masked by the contemporary gauge theories. 

 III. CONCLUDING REMARKS 

The gauge-related fallacies evidently originate from a combination of carelessness, failure to distinguish 

among variables. In the standard formalism, the labels E , A , and   are each commonly used to 

represent different variables at different times.  We summarize the major items relating to gauge fallacies 

in the following: 

a. The dynamic form of Gauss’ law contains the hidden law of physics,              
     .  This is 

one of the universal laws of electromagnetism and is needed to supplement Faraday’s law of induction in 

order to permit a full definition of IE .  It can be viewed as a missing Maxwell equation. 

b. In the absence of dynamic Coulomb fields, the gauge concept is invalid. A is uniquely defined and 

      is a physical requirement, so the Coulomb gauge is always applied incorrectly.  

c. In the presence of dynamic Coulomb fields, the gauge concept is valid but there are two gauge options, 

not one. The standard formalism for electromagnetism is expressed in terms of a hidden gauge ( 0I  ). 

Absurdities occur when conflicting gauge choices are exercised. 

d. The improper interpretation of the Lorenz transformation is the primary source of the fallacy that the 

vector potential is only a mathematical convenience. It describes a range of choices of real physically 

meaningful vector potentials. 

e. The Lorenz condition is much more than a condition. It is a precise statement of the hidden law of 

physics applicable to the vector potential, A , defined by the gauge choice, 0I  . 

f. The vector potential is not just a mathematical convenience.  As shown by Konopinski, it has both 

unique physical meaning and measurability in the absence of dynamic Coulomb fields.  

g. The Coulomb gauge does not require that Coulomb fields propagate instantaneously.  That erroneous 

belief originates from the simultaneous adoption of conflicting gauge choices. 

The simplicity of the demonstrations of these fallacies indicates that groupthink has subverted the norms 

of the scientific method regarding the gauge concept.  Our experience with groupthink in this matter 

shows that it arises from the assumption that the electromagnetic gauge concept has been properly vetted 

by generations of distinguished scientists. This may be the greatest of the fallacies. The pervasiveness of 

these fallacies and their longevity indicate that the present gauge orthodoxy is the physics blunder of the 

ages.   
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Figure 1.  Schematics of the two classes of problems encountered in electromagnetism. The schematic on 

the left corresponds to closed current loops comprised of either true currents or displacement currents; 

there are no dynamic Coulomb fields so there are no induced scalar fields and the gauge concept does not 

apply. The schematic on the right corresponds to the case where dynamic Coulomb fields are present so 

induced scalar fields exist and gauge choices are required.  The two choices for A and TOTA are illustrated.  
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TOTA

TJ

TOTA

2( / ) /t c 
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